Local Convergence Balls for Nonlinear Problems with Multiplicity and Their Extension to Eighth-Order Convergence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Family of Optimal Derivative Free Iterative Methods with Eighth-Order Convergence for Solving Nonlinear Equations

In this paper, modification of Steffensen’s method with eight-order convergence is presented. We propose a family of optimal three-step methods with eight-order convergence for solving the simple roots of nonlinear equations by using the weight function and interpolation methods. Per iteration this method requires four evaluations of the function which implies that the efficiency index of the d...

متن کامل

Three-step iterative methods with eighth-order convergence for solving nonlinear equations

A family of eighth-order iterative methods for solution of nonlinear equations is presented. We propose an optimal three-step method with eight-order convergence for finding the simple roots of nonlinear equations by Hermite interpolation method. Per iteration of this method requires two evaluations of the function and two evaluations of its first derivative, which implies that the efficiency i...

متن کامل

New iterative methods with seventh-order convergence for solving nonlinear equations

In this paper, seventh-order iterative methods for the solution ofnonlinear equations are presented. The new iterative methods are developed byusing weight function method and using an approximation for the last derivative,which reduces the required number of functional evaluations per step. Severalexamples are given to illustrate the eciency and the performance of the newiterative methods.

متن کامل

AN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS

Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...

متن کامل

A Family of Iterative Methods with Accelerated Eighth-Order Convergence

We propose a family of eighth-order iterative methods without memory for solving nonlinear equations. The new iterative methods are developed by using weight function method and using an approximation for the last derivative, which reduces the required number of functional evaluations per step. Their efficiency indices are all found to be 1.682. Several examples allow us to compare our algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2019

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2019/1427809